
CSCI2202 Lecture 4:
Functional Programming

TAs: Ehsan Baratnezhad (ethan.b@dal.ca); Precious Osadebamwen
(precious.osadebamwen@dal.ca)

Overview

● Return in functions
● Types of arguments in functions
● List & Dictionary Comprehensions
● Functional Programming (pure functions, side effects)
● Functions as variables (lambda functions, map-reduce)
● Recursion
● Iterators and itertools
● Generator functions

Let’s refresh how we get things out of
functions

Refresher: how a function is executed

demo.py

def func(z):

y = z + 10

return y

1. Load definition of func from demo module into global
namespace (i.e., memory)

2. Execute script line by line
3. Encounter func:

a. Look up func definition (i.e., code)
b. Create local namespace for func and pass in variable y from

global namespace
c. Execute func line by line
d. Stop when no more code OR return `

4. Continue executing script line by line from where you jump to
func

script.py / notebook

from demo import func

y = 10 + 1

q = func(y)

No code run in function AFTER it encounters return
def func(list_of_values):

for value in list_of_values:

return value + 1

print(“Will not run usually”)

unless list_of_values is empty

y = func([1, 2, 3])

y == 2

y = func([]) # will print to screen

y == None

def fixed_func(list_of_values):

new_values = []

for value in list_of_values:

new_values.append(value + 1)

return new_values

y = fixed_func([1, 2, 3])

y == [2, 3, 4]

Functions always return (implicitly or explicitly)

demo.py

def func(z):

y = z + 10

return

● Function finishes executing:
○ If line with return and a value/variable will be

passed back to global namespace
○ If line with just return - python will return a

special value called None (which can be
coerced as a boolean False)

○ If code just ends python automatically adds
return implicitly and returns None

script.py / notebook

from demo import func

y = 10 + 1

y = func(y)

print(y == None)

Print is not return

def dbl(x):

return x * 2

def happy(input):

y = dbl(input)

return 2 * y

>>> z = happy(4)

z == 16

def trbl(x):

print(2 * x)

return None - this is IMPLICIT

def sad(input):

y = trbl(input)

return 2 * y

>>> z = sad(4)

8

TypeError: unsupported operand type(s) for *:
'int' and 'NoneType

There are also some fancy ways we can get information
into functions

Functions can take positional or keyword args (kwargs)

def fun(a, b, c):

print(a + b * c)

fun(1, 2, 10)

21

fun(2, 1, 10)

12

def fun2(name=None, age=0):

print(f“name={name}, age={age}”)

fun2(age=7, name=’ordering’)

name=ordering, age=7

● Kwargs can be optional and have default
values

● Kwargs can be set to mutable values but
this gets confusing/messy fast (e.g.,
name=x)

Unpacking an iterable (i.e., lists/sets) of positional args

def func(a, b, c, d, e):

return a, b, c, d, e

listvars = [1,2,3,4,5]

func(listvars[0], listvars[1],

listvars[2], listvars[3],

listvars[4])

func(*listvars)

listvars = [1,2]

func(*listvars)

TypeError: func() missing 3
required positional arguments: 'c',
'd', and 'e'

Unpacking a dictionary into keyword arguments

def fun2(name=None, age=0):

print(f“name={name}, age={age}”)

vardict = {‘name’: ‘Python’, ‘age’: 36}

fun2(name=vardict[‘name’],

 age=vardict[‘age’])

“name=Python, age=36”

fun2(**vardict)

name=Python, age=36

vardict[‘extra’] = None

fun2(**vardict)

TypeError: fun2() got an unexpected
keyword argument 'extra'

del vardict[‘extra’]

del vardict[‘name’]

fun2(**vardict)

“name=None, age=36”

Warning: avoid mutable default arguments
def list_append(e, L=[]):

L.append(e)

return L

list_append('x', ['y', 'z'])

 ['y', 'z', 'x']

list_append('a')

 ['a']

list_append('b')

 ['a', 'b']

list_append('c')

 ['a', 'b', 'c']

def list_append(e, L=None):

if L == None:

L = []

L.append(e)

return L

list_append('x', ['y', 'z'])

 ['y', 'z', 'x']

list_append('a')

 ['a']

list_append('b')

 ['b']

● kwarg is defined as a mutable
variable it can be modified!

● As code runs the list stored in L
is changed leading to
unexpected behaviour

● Can fix this by adding
conditional and immutable
kwarg definition

Functions can be defined to take variable numbers of args

def fun(x, *args, **kwargs):

print("Positional arguments:", args)

print("Keyword arguments:", kwargs)

implicit return None

fun(1, 2, 3, a=4, b=5)

 Positional arguments: (2, 3)

 Keyword arguments: {'a': 4, 'b': 5}

● If you include * before a positional
argument when DEFINING a function it
will read the variables in those positions as
a tuple of variables

● Similarly ** for kwargs when DEFINING
the function will read keyword-variables in
this position as a dictionary

● You can combine regular arguments with
*pos and **kwargs:

○ Style is for regular args to go first, then
*pos, and then **kwargs

Python tends to have concise alternatives to write common
operations (like modifying elements of a list)

List comprehensions: syntactic convenience

list_x = [1,2,3]

list_y = []

for x in list_x:

list_y.append(x * 2)

list_y == [2, 4, 6]

list_x = [1,2,3]

list_y = [x * 2 for x in list_x]

list_y == [2, 4, 6]

[expression for variable in sequence]
 x * 2 x list_x

returns a list, where expression is computed for
each element in sequence assigned to variable

List comprehensions: multiple variables and iterables

points = [(3, 4), (2, 5), (4, 7)]

multi = [(x, y, x*y) for (x, y) in points]

[(3, 4, 12), (2, 5, 10), (4, 7, 28)]

[(x, y) for x in range(1, 3) for y in range(4, 6)]

[(1, 4), (1, 5), (2, 4), (2, 5)]

[expression for tuple in sequence]
 (x,y,x*y) x,y points

[expression for v1 in s1

 for v2 in s2

 for v3 in s3…]

List comprehensions: conditional filtering

[x for x in range(1, 101) if x % 7 == 1
and x % 5 == 2]

[22, 57, 92]

[(x,y,x*y) for x in range(1,11) if 6<=x<=7
for y in range(x,11) if 6<=y<=7 and not
x==y]

[(6, 7, 42)]

[expression for v1 in s1 if condition]

● List comprehensions handy but if
complicated become hard to read

● Comprehensions hard to
comprehend!

● If more than simple operation: use
explicit loop/functions

Dictionary comprehensions

names = ['Mickey', 'Donald', 'Scrooge']

list(enumerate(names, start=1))

[(1, 'Mickey'), (2, 'Donald'), (3, 'Scrooge')]

dict(enumerate(names, start=1)) # construct dict from
pairs

{1: 'Mickey', 2: 'Donald', 3: 'Scrooge'}

{name: idx for idx, name in enumerate(names, start=1)}

{'Mickey': 1, 'Donald': 2, 'Scrooge': 3}

{key : value for variable in list}

● Support conditionals and
nesting (identical to list
comprehensions)

● Great for basic stuff but
again be careful with
fancy comprehensions

Functional programming gives us powerful
tools for programming with functions

Python is primarily an imperative language

In Imperative languages code is written
that specifies a sequential of
instructions that complete a task.
These instructions typically modifies
program state until the desired result
is achieved.

Variables typically represent memory
addresses that are mutable (can be
changed) by default.

Functional programming is built on pure functions

In functional programming individual tasks are small and
achieved by passing data to a function which returns a result.
This function typically does not change the state of the
system or other functions.

Functions are composed together to form more complex
tasks. These composed functions pass the result of their
evaluation to the next function, until all functions in the
composition have been evaluated.

The entire functional program can be thought of as a single
function defined in terms of smaller ones.

Program execution is an evaluation of expressions, with the
nesting structure of function composition determining program
flow.

Variables are typically immutable and represent values (in
the mathematical sense).

Pure functions have defined input and output

● Ideally a function is a simple box with
clearly defined interactions with the rest of
the script AND system:

○ Only way for information to enter the
function via arguments

○ Only way for information to leave the
function via the return values (i.e., an
effect)

● Functions that do this are known as PURE
functions

● These have more predictable behaviours
that let us combine functions in fancy ways

Side effects remove purity but are often useful!

y = [1, 2, 3]

def func(x):

y[1] = ‘a’

print(“string”)

return x

z = func(5) # z == 5

 “string”

y # y == [1, ‘a’, 3]

● Side-effects are when a function can change
things e.g.,

○ print in a function is a side-effect
○ changing a value across namespaces
○ Creating/deleting a file

Side causes can make things complicated

import random

random.seed(42)

def func():

return random.randint(0, 100)

● Side-causes are when a function is changed
by things other than arguments:

○ random seed
○ Computer resource usage
○ Moving/missing files on computer
○ Global variables

Python is NOT a functional language but
does support some functional approaches.

Single expression function can be defined using lambda

A lambda function is a small anonymous
function.

A lambda function can take any number of
arguments, but can only have one
expression.

Lambda functions RETURNS whatever the
expression evaluates

x = lambda a, b : a * b

print(x(5, 10))

50

func2 = lambda x: len(x) / 2

func2([1,2,3,4])

2.0

Example of lambda for custom sorting of a list

L = ['AHA', 'Oasis', 'ABBA', 'Beatles', 'AC/DC', 'B. B. King', 'Bangles', 'Alan Parsons']

Sort by length, secondary after input position (default, known as stable)

sorted(L, key=len)

['AHA', 'ABBA', 'Oasis', 'AC/DC', 'Beatles', 'Bangles', 'B. B. King', 'Alan Parsons']

Sort by length, secondary alphabetically

sorted(L, key=lambda s: (len(s), s))

['AHA', 'ABBA', 'AC/DC', 'Oasis', 'Bangles', 'Beatles', 'B. B. King', 'Alan Parsons']

Functions can be treated like any other variable (most of
the time)

Functions are just a special type of variable

def func_var1(y):

return y * 10

def func_var2(y):

return y / 10

def func(func_var, x):

return func_var(x)

func(func_var1, 50)

500

func(func_var2, 50)

5

func(lambda x: x / 5, 50)

10

You can pass a function as an argument to
a function!

map is a function that applies a function to a list of inputs

my_pets = ['alfred', 'tabitha',
'william', 'arla']

uppered_pets = []

for pet in my_pets:

pet_ = pet.upper()

uppered_pets.append(pet_)

print(uppered_pets)

syntax: map(func, *iterables)

func is the function on which each
element in iterables (as many as they
are) would be applied to

uppered_pets = map(str.upper, my_pets)

map is lazy

uppered_pets == map object at xxx

uppered_pets = list(uppered_pets)

filter lets us just keep items where a func is True

scores = [66, 90, 68, 59,

76, 60, 88, 74, 81, 65]

def is_A_student(score):

return score > 80

over_80 = filter(is_A_student,

scores)

print(list(over_80))

[90, 88, 81]

dromes = ("demigod", "rewire", "madam",
"freer", "anutforajaroftuna", "kiosk")

x = filter(lambda word: word == word[::-1],

 dromes))

print(x)

“madam”

reduce lets us cumulatively apply a function

from functools import reduce

numbers = [3, 4, 6, 9, 34, 12]

def custom_sum(a, b):

return a + b

result = reduce(custom_sum, numbers)

print(result)

68

We can also have functions return functions

def make_power_func(n):

return lambda x: x ** n

power_5 = make_power_func(5)

power_5(99)

9509900499

Remember whenever you see lambda you can replace it with a full def

Functions calling themselves is particularly
powerful

Calculating factorials: one option iteration

def factorial(n):

initialize result

result = 1

multiply each number between 1 and n

for current_num in range(1, n+1):

result = result * current_num

return result

n! = n * (n-1) * (n-2) * … * 1

When we use a loop - this is
called “iteration”

We can break down factorials
into smaller factorials:

n! = n * (n-1)!

(n-1)! = (n-1) * (n-2)!

0! = 1

Calculating factorials: recursive functions

def factorial(n):

base case: n equals zero

if n == 0:

return 1

recursive case: n > 0

else:

return n * factorial(n-1)

Recursive function are functions which include
themselves as part of its definition.

Need to determine:

the recursive case (i.e., n! = n * (n-1)!)

the base case (i.e., 0! = 1)

Calculating factorials: recursive functions

def factorial(n):

base case: n equals zero

if n == 0:

return 1

recursive case: n > 0

Else:

return n * factorial(n-1)

factorial(3):

return 3 * factorial(2)

factorial(2):

return 2 * factorial(1)

factorial(1):

return 1 * factorial(0)

factorial(0):

return 1

Calculating factorials: recursive functions

def factorial(n):

base case: n equals zero

if n == 0:

return 1

recursive case: n > 0

Else:

return n * factorial(n-1)

factorial(3):

return 3 * factorial(2)

factorial(2):

return 2 * factorial(1)

factorial(1):

return 1 * 1

Calculating factorials: recursive functions

def factorial(n):

base case: n equals zero

if n == 0:

return 1

recursive case: n > 0

Else:

return n * factorial(n-1)

factorial(3):

return 3 * factorial(2)

factorial(2):

return 2 * 1

Calculating factorials: recursive functions

def factorial(n):

base case: n equals zero

if n == 0:

return 1

recursive case: n > 0

Else:

return n * factorial(n-1)

factorial(3):

return 3 * 2

Calculating factorials: recursive functions

def factorial(n):

base case: n equals zero

if n == 0:

return 1

recursive case: n > 0

Else:

return n * factorial(n-1)

factorial(3):

return 6

More recursions

def recursive_function(x):

if x > 0:

print("start", x, end=’; ’)

recursive_function(x - 1)

print("end", x, end=’; ’)

else:

print("done")

recursive_function(5)

start 5; start 4; start 3; start 2; start 1; done

end 1; end 2; end 3; end 4; end 5

recursive_function(1000000)

RecursionError: maximum recursion

depth exceeded

Iterators and itertools

Lists/strings/tuples/dict are all iterators
L = ['a', 'b', 'c']

it = iter(L) # calls L.__iter__()

next(it) # calls it.__next__()

 'a'

next(it)

 'b'

next(it)

 'c'

next(it)

 StopIteration

● Lists are iterable (must support __iter__)
● iter returns an iterator (must support __next__)
● next(iterator_object) returns the next

element from the iterator, by calling the
iterator_object.__next__(). If no more elements to
report, raises exception StopIteration

● next(iterator_object, default) returns
default when no more elements are available (no
exception is raised)

● for-loops, comprehensions, map-reduce require
iterable objects

Itertools provides a lot of useful functions for iterators

from itertools import combinations

bills = [20, 20, 20, 10, 10, 10, 10,
10, 5, 5, 1, 1, 1, 1, 1]

for combo in combinations(bills, 3):

print(combo)

 (20, 20, 20)

 (20, 20, 10)

 (20, 20, 10)

A choice of k things from a set of n things is called a
combination,

itertools.combinations() function takes two
arguments:

an iterable

a positive integer n

returns:

an iterator with tuples of all

combinations of n elements in original iterable.

https://en.wikipedia.org/wiki/Combination
https://en.wikipedia.org/wiki/Combination

Combinations and permutations often useful in science!

from itertools import permutations

list(permutations(['a', 'b', 'c']))

 [('a', 'b', 'c'), ('a', 'c', 'b'),

 ('b', 'a', 'c'), ('b', 'c', 'a'),

 ('c', 'a', 'b'), ('c', 'b', 'a')]

An ordered group of k things from a set of n things is
called a permutation,

itertools.permutations() function takes two
arguments:

an iterable

a positive integer n

returns:

an iterator with tuples of all

permutations of n elements in original iterable.

https://en.wikipedia.org/wiki/Combination

Generator functions use yield instead of return
def two():

yield 1

yield 2

two()

<generator object two at 0x03629510>

t = two()

next(t)

 1

next(t)

 2

next(t)

 StopIteration

● A generator function contains one or more yield
statements

● Python automatically makes a call to a generator
function work as an iterator (for i in t / next(t))

● Calling a generator function returns a generator
object

● Whenever next is called on a generator object, the
executing of the function continues until the next
yield expr and the value of expr is returned as a
result of next

● Reaching the end of the function or a return
statement, will raise StopIteration

● Once consumed, can't be reused

def my_generator(n):

yield 'Start'

for i in range(n):

yield chr(ord('A') + i)

yield 'Done'

More generator examples

g = my_generator(3)

print(g)

 <generator object my_generator at
0x03E2F6F0>

print([x for x in g])

 ['Start', 'A', 'B', 'C', 'Done']

print(list(g)) # generator object g
exhausted

[]
● Generators are lazy
● Cannot be reused (only if a new generator

object is created, starting over again)

More generator examples

def my_range(start, end, step):

x = start

while x < end:

yield x

x += step

list(my_range(1.5, 2.0, 0.1))

 [1.5, 1.6, 1.7000000000000002,
1.8000000000000003, 1.9000000000000004]

Summary

● Functions stop executing on return (no return means implicit return None)
● Functions can take positional and keyword arguments (and variable lengths)
● Comprehensions are convenient ways of creating iterables
● Functions can be used as variables and in functions (higher-order functions)
● Recursion calling themselves can be a useful way of breaking down problems
● Iterable variables are anything you can iterate over (itertools provide useful

tools for these variables)
● Generator functions use yield and will lazily create a series of outputs as

they are iterated over

